jueves, 11 de junio de 2009

Republica Bolivariana De Venezuela
Ministerio Del Poder Popular Para La Educación
Unidad Educativa Prof: “Fernando Ramírez”
Independencia - Yaracuy
Integrantes
Ocanto Luís
Pacheco Andrius
León Yeferson
Enriques Adriankis
Año: 5to
Sección: “A”
Prof: Olimar Valenzuela

domingo, 7 de junio de 2009

Ley De Ohm

Biografia de Ohm




(Erlangen, actual Alemania, 1789-Munich, 1854) Físico alemán. Descubridor de la ley de la electricidad que lleva su nombre, según la cual la intensidad de una corriente a través de un conductor es directamente proporcional a la diferencia de potencial entre los extremos del conductor e inversamente proporcional a la resistencia que éste opone al paso de la corriente.
Hijo de un herrero, alternó en los años de adolescencia el trabajo con los estudios, en los que demostró preferencia por los de carácter científico. En 1803 empezó a asistir a la Universidad de Erlangen, donde hizo rápidos progresos. Primero enseñó como maestro en Bamberg; pero en 1817 fue nombrado profesor de Matemáticas y Física en el instituto de Colonia.Dedicado desde el principio a los estudios de galvanoelectricidad, en 1827 publicó aspectos más detallados de su ley en un artículo titulado Die galvanische Kette, mathematisch bearbeitet (El circuito galvánico investigado matemáticamente), que, paradójicamente, recibió una acogida tan fría que lo impulsó a presentar la renuncia a su cargo en el colegio jesuita. Finalmente, en 1833 aceptó una plaza en la Escuela Politécnica de Nuremberg.Posteriormente su labor comenzó a ser justamente valorada. En 1844, Pouillet resaltaba la importancia de sus intuiciones y al año siguiente Ohm recibía la medalla Copley de la Royal Society de Londres. En 1849 se le confería la cátedra de Física de Munich, donde fue también asesor de la Administración de telégrafos. En honor a su labor, la unidad de resistencia eléctrica del sistema internacional lleva su nombre (ohmio).

Biografia James Prescott Joule


James Prescott Joule



(Salford, Reino Unido, 1818 - Sale, id., 1889). Físico británico, a quien se le debe la teoría mecánica del calor, y en cuyo honor la unidad de la energía en el sistema internacional recibe el nombre de Julio.
James Prescott Joule nació en el seno de una familia dedicada a la fabricación de cervezas. De carácter tímido y humilde, recibió clases particulares en su propio de hogar de física y matemáticas, siendo su profesor el químico británico John Dalton; compaginaba estas clases con su actividad profesional, trabajando junto a su padre en la destilería, la cual llegó a dirigir. Dalton le alentó hacia la investigación científica y realizó sus primeros experimentos en un laboratorio cercano a la fabrica de cervezas, formándose a la vez en la Universidad de Manchester.
Joule estudió aspectos relativos al magnetismo, especialmente los relativos a la imantación del hierro por la acción de corrientes eléctricas, que le llevaron a la invención del motor eléctrico. Descubrió también el fenómeno de magnetostricción, que aparece en los materiales ferromagnéticos, en los que su longitud depende de su estado de magnetización.

Campo electrico



La gravedad



La gravedad es una de las fuerzas universales de la naturaleza. Es una fuerza de atracción entre todo tipo de materia, y es muy débil con respecto a las otras fuerzas de la naturaleza. La fuerza gravitacional entre dos objetos depende de sus masas, que es la razón por la cual solamente podemos ver a la gravedad en la acción cuando al menos uno de los objetos es muy grande (como la Tierra).
Isaac Newton fue el primer científico en definir matemáticamente a la gravedad cuando formuló su ley de la gravitación universal. La ley de la gravitación dice que la gravedad es más fuerte entre dos objetos muy masivos, y se hace más débil cuando dichos objetos se encuentran más separados.
Uno de los usos de esta ley es el concepto de 'velocidad de escape', que es la velocidad que un objeto necesita alcanzar para escapar la gravitación de otro objeto (como la Tierra). La velocidad de escape puede calcularse de la ley gravitacional de Newton, y si usamos las medidas que tenemos para el planeta Tierra, vemos que la velocidad de escape de la tierra es de aproximadamente 11 km/s. ¡Esto significa que si puedes lanzar una pelota de béisbol a 11 km/s, nunca bajaría!
El concepto de velocidad de escape es especialmente interesante cuando se considera a los hoyos negros. Estos objetos son extremadamente densos y pequeños. ¡Cuando calculamos la velocidad de escape de estos objetos, encontramos que el número es realmente la velocidad de la luz, de manera que nisiquiera la luz puede salir del hoyo negro!

Representación artística de algunas de las fuerzas del universo. La manzana que cae es, por supuesto, parte de la historia de Isaac Newton, quien descubrió la ley de la gravedad cuando una manzana cayó del árbol bajo el que se sentaba

¿ Que es la Fisica?

Es una ciencia natural que estudia las propiedades del espacio, el tiempo , la materia y la energia, así como sus interaccines La física no es sólo una ciencia teórica, es también una ciencia experimental. Como toda ciencia, busca que sus conclusiones puedan ser verificables mediante experimentos y que la teoría pueda realizar predicciones de experimentos futuros. Dada la amplitud del campo de estudio de la física, así como su desarrollo histórico en relación a otras ciencias, se la puede considerar la ciencia fundamental o central, ya que incluye dentro de su campo de estudio a la química, la biología y la electrónica, además de explicar sus fenómenos. La física en su intento de describir los fenómenos naturales con exactitud y veracidad ha llegado a límites impensables, el conocimiento actual abarca desde la descripción de partículas fundamentales microscópicas, el nacimiento de las estrellas en el universo e incluso conocer con una gran probabilidad lo que aconteció los primeros instantes del nacimiento de nuestro universo, por citar unos pocos conocimientos. Esta tarea comenzó hace más de dos mil años con los primeros trabajos de filósofos griegos como Demócrito, Epicuro o Aristóteles, y continuada después por científicos como Galileo Galilei, Isaac Newton, James Clerk Maxwell, Albert Einstein, Niels Bohr, Werner Heisenberg, Paul Dirac, Richard Feynman, entre muchos otros.


Breve historia de la física




Se conoce que la mayoría de civilizaciones de la antigüedad trataron desde un principio de explicar el funcionamiento de su entorno, miraban las estrellas y pensaban como ellas podían regir su mundo. Esto llevo a muchas interpretaciones de carácter mas filosófico que físico, no en vano en esos momentos la física se la llamaba filosofía natural. Muchos filósofos se encuentran en el desarrollo primigenio de la física, como Aristóteles, Tales de Mileto o Demócrito, por ser los primeros en tratar de buscar algún tipo de explicación a los fenómenos que los rodeaban.[1] A pesar de que las teorías descriptivas del universo que dejaron estos pensadores eran erradas, éstas tuvieron validez por mucho tiempo, casi dos mil años, en parte por la aceptación de la iglesia católica de varios de sus preceptos como la teoría geocéntrica o las tesis de Aristóteles.[2]
Esta etapa denominada oscurantismo en la ciencia termina cuando Nicolás Copérnico, considerado padre de la astronomía moderna, en 1543 recibe la primera copia de su De Revolutionibus Orbium Coelestium. A pesar de que Copérnico fue el primero en formular teorías plausibles, es otro personaje al cual se le considera el padre de la física como la conocemos ahora. Un catedrático de matemáticas de la Universidad de Pisa a finales del siglo XVI cambiaría la historia de la ciencia empleando por primera vez experimentos para comprobar sus aseveraciones, Galileo Galilei. Con la invención del telescopio y sus trabajos en planos inclinados, Galileo empleó por primera vez el método científico y llegó a conclusiones capaces de ser verificadas. A sus trabajos se le unieron grandes contribuciones por parte de otros científicos como Johannes Kepler, Blaise Pascal, Christian Huygens.[2]
Posteriormente, en el siglo XVII, un científico inglés reúne las ideas de Galileo y Kepler en un solo trabajo, unifica las ideas del movimiento celeste y las de los movimientos en la tierra en lo que el llamó gravedad. En 1687, Sir Isaac Newton en su obra Philosophiae Naturalis Principia Mathematica formuló los tres principios del movimiento y una cuarta Ley de la gravitación universal que transformaron por completo el mundo físico, todos los fenómenos podían ser vistos de una manera mecánica.[3]
El trabajo de Newton en el campo, perdura hasta la actualidad; todos los fenómenos macroscópicos pueden ser descritos de acuerdo a sus tres leyes. De ahí que durante el resto de ese siglo y el posterior siglo XVIII, todas las investigaciones se basaron en sus ideas. De ahí que otras disciplinas se desarrollaron, como la termodinámica, la óptica, la mecánica de fluidos y la mecánica estadística. Los conocidos trabajos de Daniel Bernoulli, Robert Boyle, Robert Hooke entre otros, pertenecen a esta época.[4]
Es en el siglo XIX donde se producen avances fundamentales en la electricidad y el magnetismo principalmente de la mano de Charles-Augustin de Coulomb, Luigi Galvani, Michael Faraday y Georg Simon Ohm que culminaron en el trabajo de James Clerk Maxwell de 1855 que logró la unificación de ambas ramas en el llamado electromagnetismo. Además se producen los primeros descubrimientos sobre radiactividad y el descubrimiento del electrón por parte de Joseph John Thomson en 1897.[5]
Durante el Siglo XX, la Física se desarrolló plenamente. En 1904 se propuso el primer modelo del átomo. En 1905, Einstein formuló la Teoría de la Relatividad especial, la cual coincide con las Leyes de Newton cuando los fenómenos se desarrollan a velocidades pequeñas comparadas con la velocidad de la luz. En 1915 extendió la Teoría de la Relatividad especial, formulando la Teoría de la Relatividad general, la cual sustituye a la Ley de gravitación de Newton y la comprende en los casos de masas pequeñas. Max Planck, Albert Einstein, Niels Bohr y otros, desarrollaron la Teoría cuántica, a fin de explicar resultados experimentales anómalos sobre la radiación de los cuerpos. En 1911, Ernest Rutherford dedujo la existencia de un núcleo atómico cargado positivamente, a partir de experiencias de dispersión de partículas. En 1925 Werner Heisenberg, y en 1926 Erwin Schrödinger y Paul Adrien Maurice Dirac, formularon la Mecánica cuántica, la cual comprende las teorías cuánticas precedentes y suministra las herramientas teóricas para la Física de la materia condensada.[6]
Posteriormente se formuló la Teoría cuántica de campos, para extender la mecánica cuántica de manera consistente con la Teoría de la Relatividad especial, alcanzando su forma moderna a finales de los 40, gracias al trabajo de Richard Feynman, Julian Schwinger, Tomonaga y Freeman Dyson, quienes formularon la teoría de la electrodinámica cuántica. Asimismo, esta teoría suministró las bases para el desarrollo de la física de partículas. En 1954, Chen Ning Yang y Robert Mills desarrollaron las bases del modelo estándar. Este modelo se completó en los años 1970, y con él fue posible predecir las propiedades de partículas no observadas previamente, pero que fueron descubiertas sucesivamente, siendo la última de ellas el quark top.[6]
Los intentos de unificar las cuatro interacciones fundamentales ha llevado a los físicos a nuevos campos impensables. Las dos teorías más aceptadas, la mecánica cuántica y la relatividad general, que son capaces de describir con gran exactitud el macro y el micromundo, parecen incompatibles cuando se las quiere ver desde un mismo punto de vista. Es por eso que nuevas teorías han visto la luz, como la supergravedad o la teoría de cuerdas, que es donde se centran las investigaciones a inicios del siglo XXI.

ATOMO


El Atomo

Es la partícula más pequeña de un elemento que conserva las características químicas del propio elemento. Está constituido por un núcleo formado por protones (partículas positivas) y neutrones (neutros), rodeado por una o más órbitas de electrones (partículas negativas).En condiciones de estabilidad el número de los electrones es igual al de los protones, de manera que el átomo es electrónicamente neutro.Las características químicas de un elemento dependen del número y de la disposición de los electrones en las diversas órbitas de electrones, de modo que puede decirse que el átomo está compuesto, sustancialmente, por espacios vacíos. La masa del átomo reside casi toda en el núcleo: cada electrón es apenas 1/1.840 con respecto a la masa de un protón o de un neutrón (protones y neutrones tienen igual masa). El número de protones en el núcleo es llamado número atómico; el de los neutrones y protones conjuntamente, número de masa.Cuando dos átomos tienen igual número de protones, y pertenecen por lo tanto al mismo elemento químico, pero un número diferente de neutrones, y por lo tanto un número diferente de masa, son llamados isótopos.Los elementos existentes en la naturaleza son 92, del hidrógeno al uranio y por lo tanto el número máximo de protones que se encuentran en un núcleo es 92. Sin embargo, en el laboratorio se han construido átomos de elementos artificiales con más de 100 protones en el núcleo.


Proton
Partícula subatómica que forma parte del núcleo del Atomo. El protón tiene una carga positiva y una masa 1.840 veces mayor a la del electrón (que, por convención, es igual a 1). En un átomo estable, el número de protones en el núcleo es igual al de los electrones. Al protón y al neutrón se les denomina también nucleones.El núcleo del atómo de hidrógeno está formado por un único protón. La masa de un protón es de 1,6726 × 10-27 kg, aproximadamente 1.836 veces la del electrón. Por tanto, la masa de un átomo está concentrada casi exclusivamente en su núcleo.El protón tiene un momento angular intrínseco, o espín, y por tanto un momento magnético. Por otra parte, el protón cumple el principio de exclusión. El número atómico de un elemento indica el número de protones de su núcleo, y determina de qué elemento se trata.

Electron
Pequeña partícula atómica portadora de la carga negativa.En un átomo estable los electrones están en órbita alrededor del núcleo y su número es igual al de los protones (partículas positivas) contenidos en el propio núcleo.La masa de un electrón es 1/1.840 con respecto a la de un protón. Su carga negativa, que es la más pe queña jamás determinada en la naturaleza, es tomada, por convención, igual a la unidad.Los electrones intervienen en una gran variedad de fenómenos físicos y químicos. Se dice que un objeto está cargado eléctricamente si sus átomos tienen un exceso de electrones (posee carga negativa) o un déficit de los mismos (posee carga positiva).La conducción del calor también se debe fundamentalmente a la actividad electrónica. El estudio de las descargas eléctricas a través de gases enrarecidos en los tubos de vacío fue el origen del descubrimiento del electrón.Las partículas beta que emiten algunas sustancias radiactivas son electrones.
Neutron

Un neutrón es un barión neutro formado por dos quarks down y un quark up. Forma, junto con los protones, los núcleos atómicos. Fuera del núcleo atómico es inestable y tiene una vida media de unos 15 minutos emitiendo un electrón y un antineutrino para convertirse en un protón. Su masa es muy similar a la del protón.
Algunas de sus propiedades:
Masa: mn = 1,675x10-27 kg = 1,008587833 uma
Vida media: tn = 886,7 ± 1,9 s
Momento magnético: mn = -1,9130427 ± 0,0000005 mN
Carga eléctrica: 0 C.
El neutrón es necesario para la estabilidad de casi todos los núcleos atómicos (la única excepción es el hidrógeno), ya que interactúa fuertemente atrayéndose con los protones, pero sin repulsión electrostática.

lunes, 4 de mayo de 2009

Isaac Newton




Isaac Newton



(4 de enero, 1643 NS – 31 de marzo, 1727 NS) fue un físico, filósofo, inventor, alquimista y matemático inglés, autor de los Philosophiae naturalis principia mathematica, más conocidos como los Principia, donde describió la ley de gravitación universal y estableció las bases de la Mecánica Clásica mediante lasleyes que llevan su nombre. Entre sus otros descubrimientos científicos destacan los trabajos sobre la naturaleza de la luz y la óptica (que se presentan principalmente en el Opticks) y el desarrollo del cálculo matemático.
Newton fue el primero en demostrar que las leyes naturales que gobiernan el movimiento en la Tierra
y las que gobiernan el movimiento de los cuerpos celestes son las mismas. Es, a menudo, calificado como el científico más grande de todos los tiempos, y su obra como la culminación de la Revolución científica.
Entre sus hallazgos científicos se encuentran los siguientes: el descubrimiento de que el espectro decolor que se observa cuando la luz blanca pasa por un prisma es inherente a esa luz, en lugar de provenir del prisma (como había sido postulado por Roger Bacon en el siglo XIII); su argumentación sobre la posibilidad de que la luz estuviera compuesta por partículas; su desarrollo de una ley de conducción térmica, que describe la tasa de enfriamiento de los objetos expuestos al aire; sus estudios sobre la velocidad del sonido en el aire; y su propuesta de una teoría sobre el origen de lasestrellas.
Newton comparte con Leibniz el crédito por el desarrollo del cálculo integral y diferencial, que utilizó para formular sus leyes de la física. También contribuyó en otras áreas de la matemática, desarrollando el teorema del binomio. El matemático y físico matemático Joseph Louis Lagrange (1736–1813), dijo que "Newton fue el más grande genio que ha existido y también el más afortunado dado que sólo se puede encontrar una vez un sistema que rija el mundo."